The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 0 2X+2 0 0 2X+2 2 2X 2X 2 2X+2 2X 2X 2 2X+2 0 2X 2X+2 2 0 2X 2X+2 2 2X 0 2 2X+2 2X 0 2 2X+2 2X 2X+2 2 0 2X+2 2X+2 2 2 2X 0 2 2X+2 0 0 2X 2X 2X 2X 0 0 2X+2 2X+2 2 2 2 2 2X+2 2X+2 0 0 2X 2X 0 2X 2X+2 2 0 0 2X+2 2X+2 2 2X 2X 2 2X 0 2 2X+2 0 0 0 0 2 2X+2 2X 2X+2 2 2X 2X 2X+2 2 2X 0 2 2X+2 0 0 2X+2 2X+2 0 2X 2 2 2X 2X 2 2 2X 0 2X+2 2X+2 0 2X+2 2X+2 0 2 2X 2 2 2X+2 2 2X+2 2X 0 0 2X 2X 0 2X+2 2 2 2X+2 2X+2 2 2 2X+2 0 2X 2X 0 0 2X 2X 0 0 2X+2 2X+2 0 2X 2 0 2 2 2X 2 2X 0 2X+2 2X+2 2X 0 0 generates a code of length 82 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 80. Homogenous weight enumerator: w(x)=1x^0+15x^80+222x^82+15x^84+2x^98+1x^132 The gray image is a code over GF(2) with n=656, k=8 and d=320. This code was found by Heurico 1.16 in 0.438 seconds.